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A minimal athermal model for the flow of dense disordered materials is proposed, based on two generic
ingredients: local plastic events occuring above a microscopic yield stress, and the nonlocal elastic release of
the stress these events induce in the material. A complex spatiotemporal rheological behavior results, with
features in line with recent experimental observations. At low shear rates, macroscopic flow actually originates
from collective correlated bursts of plastic events, taking place in dynamically generated fragile zones. The
related correlation length diverges algebraically at small shear rates. In confined geometries, bursts occur
preferentially close to the walls, yielding an intermittent form of flow localization.
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Many disordered dense systems exhibit a peculiar flowing
behavior which strongly departs from the academic Newton-
ian description, with a shear rate dependence of the viscosity
and indications of an actual yield stress value. For such
“yield stress fluids,” it has been recognized recently that
theseglobal characteristics are, in most cases, associated
with a peculiarspatial behavior, in the form of heteroge-
neous flow behavior, where a frozen region coexists with a
flowing onesthe so-called “shear band”d. A striking remark
is that such generic behaviors are observed in a wide class of
experimental systems, with very different length/time/
interaction scales, such as foamsf1,2g, granular systems
f3,4g, emulsionsf3,5,6g, colloidal glassesf7g, and polymers,
but also in simulations of granular systems, foams, and
model glassesf8–11g. These generic features suggest an un-
derlying common scenario for the flow properties, and has
motivated various macroscopic phenomenological ap-
proachesssee, e.g., references cited inf5,8gd. However, a
consistent framework linking the global rheology to the local
microscopic dynamics is still lacking, although some
progress in this direction has been made in recent years
f12–14g. In particular, studies have put forward the role of
local plastic rearrangements in the global flow behavior
f11,15,16g. Such an idea actually goes back to the Princen
model for the deformation of foamsf17g: flow occurs via a
succession of reversible elastic deformations and irreversible
plastic eventss“T1” events in foamsd, associated with the
existence of a local yield stress. However, if the correspond-
ing physical picture seemsa priori quite clear, a gap still
persists between this simple microscopic scenario and the
complex spatiotemporal organization responsible for the rhe-
ology of these materials at finite shear rates.

In this paper, we propose a simple mesoscopic model,
constructed on the basis of twominimal and generic ingre-
dients: localized plastic events associated with a microscopic
yield stress, and the resulting elastic relaxation of the stress

over the system. We then show that the simplicity of the
description contrasts with the complex rheological behavior
deriving from it. In particular, we find the global rheology to
be associated with a complex spatiotemporal organization
which builds up as the system is sheared steadily, with an
intermittent behavior corresponding to “bursts” of correlated
events, the typical size of which diverges at small shear rate.
We argue that in its present simple form our model seems to
capture many observed experimental features and thus stands
as a promising starting point for the elaboration of a generic
scenario for the slow flow of yield stress fluids.

Let us now define the ingredients of our approach, which
we implement here in the simplified frame of a two-
dimensional s2Dd scalar approach, focusing only on the
simple shear components of the stress and strain. We con-
sider a two-dimensional material to which an average shear
rate ġ is applied macroscopicallyscorresponding to a
z-dependent displacement in thex directiond. The material is
described at a coarse-grained level, intermediate between the
microscopicsparticled and macroscopic scale. The quantity
of interest is thexz component of the time-dependent local
shear stressssx,z; td. First, without entering into details at
this level, a few basic rules are stated:sid below a slocally
definedd yield stresssY, the system responds elastically to
the imposed deformation;sii d abovesY, plastic events may
occur in the systemsalong laws discussed in the followingd;
siii d plastic events take the form of a localized shear strain;
sivd such a plastic event induces a long-rangeelasticpertur-
bation of the shear stress field in the material. A few remarks
can be made at this level. First, although the notion of indi-
vidual events is quite intuitive, in particular in foams, it has
been evidenced unambiguously only recently at the micro-
scopic level in disordered systemsf11,16g. Second, the shear
stress perturbation alluded to insivd is computed exactly
within the framework of tensorial linear elasticity for an iso-
tropic incompressible material as reported in Ref.f18g. This
provides the explicit Green’s function,Gxzxz, relating the
stress variation,ds, at any point in the system, to thexz
component of the plastic straineplshx8 ,z8j ; td, associated with*Electronic address: lbocquet@lpmcn.univ-lyon1.fr
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the plastic event localized athx8 ,z8j. Using the simpler no-
tation G for this function yields

dsshx,zj;td = 2mE dr 8Gsx,x8,z,z8deplshx8,z8j;td. s1d

The shear modulusm has been exhibited for convenience. In
a 2D infinite system,G decreases asGsrd=1/pr2 coss4ud in
cylindrical coordinateshr ,uj sin agreement with Refs.
f16,19gd. In general, its precise form depends on the specific
geometry of the system: infinite, periodic, or confined be-
tween two rigid wallsf18g. Summing up at this point, the
evolution of the shear stress field results from the global
elastic loadingġ plus the perturbations induced by the local-
ized plastic events,

]tsshx,zj,td = mġ + 2mE dr 8Gsx,x8,z,z8dėplshx8,z8j;td.

s2d

The last part of the modelization is the choice of a dynamical
law for the plastic events, i.e., the feedback law relating the
plastic relaxationeplshx,zj ; td to the stress fieldsshx8 ,z8j ; t8
, td. As in the Princen model, we choose alocal relation
with a threshold stress valuesY. In addition, an intrinsic time
scalet is introduced to describe the dynamics of the event.
We anticipate that this will lead to a shear rate dependence of
the dynamical structure in the flow, driving the system away
from the critical quasistatic limitsself-organized criticality in
a related quasistatic model was reported inf20gd to a more
homogenous situation at large shear rate. Another important
outcome is that the local stress may exceed the yield stress
sY for a finite time interval so that the averaged stress can
also grow beyond this value, as observed experimentally.

There are actually many possibilities to introduce such an
intrinsic time scale for plastic events, and few guides as to
how we should do so. We make here a simple arbitrary
choice and assume that the system locally alternates between
a purely elastic state and a plastic statesduring which stress
is releasedd, with finite transition rates: tplast

−1 is the rate of
transitions fromelastic to plastic, while the reverse transition
is characterized by a timetelast. Since plastic events only
occur above the yield stresssY, we taketplastssd=` if lo-
cally s,sY. We otherwise assume for sake of simplicity
fixed values for thetelast andtplast, independent of the local
stress. In order to finalize our model, we eventually have to
quantify the amount of plastic strain released in an event and
simply assume a Maxwell, viscoelasticlike relaxation of the
material in the plastic stateėplast=s /2mt, with t a mechani-
cal relaxation time. All the previous discussion is best sum-
marized by introducting a “state variable”nsx,zd such that
n=0/1 identifies the elastic/plastic state,

ėplshx,zj,td =
1

2mt
nshx,zj,td sshx,zj,td

nshx,zj,td: 0 →
if s.sY

tplast
−1

1 0←
∀s

telast
−1

1. s3d

Equationss2d ands3d constitute our minimal starting point to
describe the dynamics of yield stress materials under flow.
Note that, as in the somewhat related analysis of Langerf15g,
neither the stress nor the state variable are convected by the
displacement field within the present simplified model. In
other words, although the system locally flowssas described
by a local shear rated, the net relative motion between the
elements is neglected.

Before turning to their resolution, Eqs.s2d and s3d are
made dimensionless usingsY andt as stress and time units.
An important point emerging from this procedure is thatthe
shear rate only appears in the form of the ratioġ / ġc, with
ġc=sY/mt. In this dimensionless form, our model therefore
points out to a very general scenario, in which specific mi-
croscopic details are embeded in the precise values ofsY and
ġc, as already suggested by some experimentsf5,21g.

The dynamical equations in this dimensionless form have
been solved numerically by discretizing the material into
blocks of elementary sizea. A pseudospectral method is
used, which allows us to express easily the stress increments
in reciprocal space at each time step. On the other hand, the
state variablensia , jad in the blockhi , jj evolves in real space
according to the stochastic laws enounced above. We have
focused on two geometries ofN=sL /ad2 blocks: a biperiodic
geometry and a confined one, where the system is bounded
by two rigid parallel walls. Practically, we have chosen
tplast=telast=t for the results reported here.

We first quote the results for the biperiodic system. In Fig.
1, we plot the results for the macroscopic flow curve, which
displays the essential features observed in experiments. First,
a plateau is found at small shear rate, defining amacroscopic
yield stressat vanishing shear rates,sY

M. The latter is found
to be smaller than themicroscopicyield stresssY, and also
lower than the related peak value of the stress versus time at
small shear ratesssee inset in Fig. 1d. A different regime is
found at large shear rates, where a Newtonian behavior is

FIG. 1. Shear stress vs shear rate in units ofsY and ġc

=sY/mt slog-log plotd. The various symbols correspond to four
different system sizessfrom 434 to 32332 blocksd. Inset: time-
dependent stress at the low shear rate corresponding to the arrow.
The dashed line corresponds to the microscopic yield stresssY.
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recovered. The dynamics of the time-dependent shear stress
is also quite different in these two regimes. In particular,
relative stress fluctuations around the mean value increase as
the shear rate decreasessnot shownd, in agreement with ob-
servations in experiments and simulationsf7,8g. A zoom on
the dynamics at a shorter time scale actually shows that at
small shear rate the stress exhibits successive periods of elas-
tic raise and abrupt drops, as observed in the quasistatic limit
in various systemsf16g. These drops encompass many
events, constituting “bursts” of correlated plastic activity.
More interestingly these dynamically correlated events are
also highly correlated in space, as emphasized in Fig. 2,
where the spatial distribution of the cumulated plastic activ-
ity is plotted for a given succession of plastic events. This
figure clearly shows that while at high shear rate plastic
events are spatially decorrelated, a correlation pattern shows
up as the shear rate is decreased, leading to the development
of long-lived “fragile” zones in the system where nearly all
the plastic activity takes place. This graph therefore suggests
the development of a shear rate-dependent length scale in the
system, which grows at small shear rates. In order to get
more insight into this aspect, a possible route is to measure
the length via measurements of correlation function. This is,
however, a difficult task in generalf22g and we have fol-
lowed a different strategy here, analogous to finite-size scal-
ing. Namely, since such a length is associated with the cor-
relation of plastic events during a macroscopic stress drop, it
should show up in the statistics of stress drops. To this end,
we have computed the average amplitude of the drops of the
global stress,Ds, as a function of the applied macroscopic
shear rateġ f23g. Results are shown in Fig. 3 for various
system sizes. Let us first discuss the inset which exhibits the
bare results for the average stress drop normalized by the
average stress,Ds̃=Dssġd /ssġd. Three different regimes
can be identified for all system sizes: two plateaus at large
and small shear rates and an intermediate regime relating
these two. We remark that the transition between the inter-
mediate and “saturation” regime at lowġ shifts to lower
shear rates when the size of the system is increased. The
system size dependence of this transitionat low shear rateis
best evidenced if one rescales the shear rates asNġ / ġc, and
the stress asDs̃sġd /Ds̃s0d, with Ds̃s0d,N−0.85 describing

the low shear rate plateaus. This remarkable collapse of the
rescaled curves suggest a quantification of the spatial corre-
lations. Assuming the existence of a shear rate-dependent
correlation lengthjsġd in the system, a saturation effect is
expected for the mean stress drop whenjsġd reaches the
system size,N1/2a. Note that we describe the correlations
with a single diverging correlation length, in line with our
observation that directionsx andz are equivalentssee Fig. 2d.

The rescaled graph indicates that such a saturation occurs
for a fixed value ofNġ / ġc, which suggestsjsġd, ġ−a, with
a.1/2 from these data. Our model therefore explicitly
yields indication ofsat leastd one diverging length scale at
small shear rates, a feature absent in previous studies of
yield stress fluids. Interestingly, the transition between the
intermediate to the large shear rate regime on Fig. 3sright
dotted line in the insetd occurs roughly at the characteristic
shear rateġc, independent of system size, as for the macro-
scopic flow curve in Fig. 1. From these first results, our
model yields a flow behavior with three different regimes as
sketched on Fig. 4:sid for ġ.ġc sor s.sYd, the blocks are
uncorrelated in their dynamics and the flow is homogeneous;
sii d for ġ,ġc, correlations extend up to a correlation length
jsġd which diverges algebraically at small shear rates;siii d
at very low shear rates, the correlation length saturates at
the size of the system, leading to a quasistatic dynamical
behavior.

We have also studied a confined geometry where two
rigid walls bound the system in thez direction. A delicate
technical point is then the calculation of the Green’s func-
tion, which shows that shear stress perturbation is amplified
close to the wallsf18g. Essentially, the picture in the confined
geometry is very similar to that of the biperiodic system
described abovesFigs. 1, 3, and 4d. One important specific
feature, however, concerns the localization of the flow: while
at high shear rate the flow is homogeneous, at low shear rates
the plastic bursts occur preferentially close to the walls, and
appear as spatially correlated structures that are parallel to

FIG. 2. Spatial distribution inhx,zj plane of the cumulated plas-
tic activity for a N=16316 system after 2N=512 plastic events.
From left to right the dimensionless shear rate,ġ / ġc, is
5.10−4,5.10−3,0.05,2. Gray levels correspond to the number of
plastic events. Note that the occcurence of bursts of plastic activity
in both sx andzd directions is due to the presentbiperiodic geom-
etry. In the confined geometry where walls perpendicular toz are
present, only bands parallel tox show up.

FIG. 3. Mean stress dropsnormalized by the average stressd,
Ds̃, as a function of the renormalized dimensionless shear rate,
Nġ / ġc. Results in the inset are shown for five different sizessfrom
232 to 32332 blocks from top to bottomd, while in the main
graph all curves are rescaled using variableshNġ / ġc,Ds̃sġd /Ds̃s0dj
to emphasize the scaling of the transition between the small shear
rate plateau and the intermediate regime. The dotted lines in the
inset sketch the separation between the three dynamical regimes.
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the walls. In this last regime, theaverageflow corresponds
to an increased shear rate close to the walls, but this “local-
ization on average” of the flow is only part of a complex
spatiotemporal pattern. A more detailed analysis of this re-
gime is left for a future publication.

To sum up, we have proposed an athermal elastoplastic
model for the flow of yield stress systems, constructed on the
basis of two generic ingredients: localized plastic events, oc-
curring above a microscopic yield stress with a finite dura-

tion, and an otherwise elastic behavior of the materialsin-
cluding redistribution of stress during the eventsd. These two
ingredients lead to a complex spatiotemporal behavior of the
system at small shear rates. More precisely, a correlation
length is exhibited which diverges at small shear rates, cor-
responding to intermittent collective eventsscorrelated bursts
of plastic eventsd, leading to the creation ofslong-livedd frag-
ile zones where the deformation of the system takes place.
These bursts take place preferentially close to the walls. At
high shear rates, this correlation length is comparable to the
size of the individual elements which flow independently
from one another. These features are essentially compatible
with recent observations in experimental or numerical sys-
tems: localization of the time-averaged deformation
f1–5,8,9g, intermittency at low shear ratef4,6,8,16g, a diverg-
ing length scale at small shear rate in granular systemsf24g.
Moreover, numerical simulation of glassy systemsf8g show
that flow heterogeneities occur for global shear rates such
that s,sY, a conclusion which is recovered within our
minimal model. Although our model should be refined to
take into account convection and the full tensorial nature of
the problem, the present early results suggest that the generic
behaviors observed in the experiments and molecular simu-
lations originate in a minimal number of ingredients. This
opens the possibility for a coherent and robust scenario for
the slow flow behavior of disordered materials.
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FIG. 4. Sketch of the emerging flow scenario in thesġ / ġc,1 /Nd
plane. Successive transitions from a homogeneous flow to an orga-
nized and a finite-size regime occur as the correlation lengthj
grows from the block size to the system size, as the shear rate
decreases.
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